Feature Detection ================= .. highlight:: cpp .. index:: Canny cv::Canny --------- .. cfunction:: void Canny( const Mat\& image, Mat\& edges, double threshold1, double threshold2, int apertureSize=3, bool L2gradient=false ) Finds edges in an image using Canny algorithm. :param image: Single-channel 8-bit input image :param edges: The output edge map. It will have the same size and the same type as ``image`` :param threshold1: The first threshold for the hysteresis procedure :param threshold2: The second threshold for the hysteresis procedure :param apertureSize: Aperture size for the :func:`Sobel` operator :param L2gradient: Indicates, whether the more accurate :math:`L_2` norm :math:`=\sqrt{(dI/dx)^2 + (dI/dy)^2}` should be used to compute the image gradient magnitude ( ``L2gradient=true`` ), or a faster default :math:`L_1` norm :math:`=|dI/dx|+|dI/dy|` is enough ( ``L2gradient=false`` ) The function finds edges in the input image ``image`` and marks them in the output map ``edges`` using the Canny algorithm. The smallest value between ``threshold1`` and ``threshold2`` is used for edge linking, the largest value is used to find the initial segments of strong edges, see http://en.wikipedia.org/wiki/Canny_edge_detector .. index:: cornerEigenValsAndVecs cv::cornerEigenValsAndVecs -------------------------- .. cfunction:: void cornerEigenValsAndVecs( const Mat\& src, Mat\& dst, int blockSize, int apertureSize, int borderType=BORDER_DEFAULT ) Calculates eigenvalues and eigenvectors of image blocks for corner detection. :param src: Input single-channel 8-bit or floating-point image :param dst: Image to store the results. It will have the same size as ``src`` and the type ``CV_32FC(6)`` :param blockSize: Neighborhood size (see discussion) :param apertureSize: Aperture parameter for the :func:`Sobel` operator :param boderType: Pixel extrapolation method; see :func:`borderInterpolate` For every pixel :math:`p` , the function ``cornerEigenValsAndVecs`` considers a ``blockSize`` :math:`\times` ``blockSize`` neigborhood :math:`S(p)` . It calculates the covariation matrix of derivatives over the neighborhood as: .. math:: M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}(dI/dx dI/dy)^2 \\ \sum _{S(p)}(dI/dx dI/dy)^2 & \sum _{S(p)}(dI/dy)^2 \end{bmatrix} Where the derivatives are computed using :func:`Sobel` operator. After that it finds eigenvectors and eigenvalues of :math:`M` and stores them into destination image in the form :math:`(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)` where * :math:`\lambda_1, \lambda_2` are the eigenvalues of :math:`M` ; not sorted * :math:`x_1, y_1` are the eigenvectors corresponding to :math:`\lambda_1` * :math:`x_2, y_2` are the eigenvectors corresponding to :math:`\lambda_2` The output of the function can be used for robust edge or corner detection. See also: :func:`cornerMinEigenVal` , :func:`cornerHarris` , :func:`preCornerDetect` .. index:: cornerHarris cv::cornerHarris ---------------- .. cfunction:: void cornerHarris( const Mat\& src, Mat\& dst, int blockSize, int apertureSize, double k, int borderType=BORDER_DEFAULT ) Harris edge detector. :param src: Input single-channel 8-bit or floating-point image :param dst: Image to store the Harris detector responses; will have type ``CV_32FC1`` and the same size as ``src`` :param blockSize: Neighborhood size (see the discussion of :func:`cornerEigenValsAndVecs` ) :param apertureSize: Aperture parameter for the :func:`Sobel` operator :param k: Harris detector free parameter. See the formula below :param boderType: Pixel extrapolation method; see :func:`borderInterpolate` The function runs the Harris edge detector on the image. Similarly to :func:`cornerMinEigenVal` and :func:`cornerEigenValsAndVecs` , for each pixel :math:`(x, y)` it calculates a :math:`2\times2` gradient covariation matrix :math:`M^{(x,y)}` over a :math:`\texttt{blockSize} \times \texttt{blockSize}` neighborhood. Then, it computes the following characteristic: .. math:: \texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2 Corners in the image can be found as the local maxima of this response map. .. index:: cornerMinEigenVal cv::cornerMinEigenVal --------------------- .. cfunction:: void cornerMinEigenVal( const Mat\& src, Mat\& dst, int blockSize, int apertureSize=3, int borderType=BORDER_DEFAULT ) Calculates the minimal eigenvalue of gradient matrices for corner detection. :param src: Input single-channel 8-bit or floating-point image :param dst: Image to store the minimal eigenvalues; will have type ``CV_32FC1`` and the same size as ``src`` :param blockSize: Neighborhood size (see the discussion of :func:`cornerEigenValsAndVecs` ) :param apertureSize: Aperture parameter for the :func:`Sobel` operator :param boderType: Pixel extrapolation method; see :func:`borderInterpolate` The function is similar to :func:`cornerEigenValsAndVecs` but it calculates and stores only the minimal eigenvalue of the covariation matrix of derivatives, i.e. :math:`\min(\lambda_1, \lambda_2)` in terms of the formulae in :func:`cornerEigenValsAndVecs` description. .. index:: cornerSubPix cv::cornerSubPix ---------------- .. cfunction:: void cornerSubPix( const Mat\& image, vector\& corners, Size winSize, Size zeroZone, TermCriteria criteria ) Refines the corner locations. :param image: Input image :param corners: Initial coordinates of the input corners; refined coordinates on output :param winSize: Half of the side length of the search window. For example, if ``winSize=Size(5,5)`` , then a :math:`5*2+1 \times 5*2+1 = 11 \times 11` search window would be used :param zeroZone: Half of the size of the dead region in the middle of the search zone over which the summation in the formula below is not done. It is used sometimes to avoid possible singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such size :param criteria: Criteria for termination of the iterative process of corner refinement. That is, the process of corner position refinement stops either after a certain number of iterations or when a required accuracy is achieved. The ``criteria`` may specify either of or both the maximum number of iteration and the required accuracy The function iterates to find the sub-pixel accurate location of corners, or radial saddle points, as shown in on the picture below. .. image:: ../../pics/cornersubpix.png Sub-pixel accurate corner locator is based on the observation that every vector from the center :math:`q` to a point :math:`p` located within a neighborhood of :math:`q` is orthogonal to the image gradient at :math:`p` subject to image and measurement noise. Consider the expression: .. math:: \epsilon _i = {DI_{p_i}}^T \cdot (q - p_i) where :math:`{DI_{p_i}}` is the image gradient at the one of the points :math:`p_i` in a neighborhood of :math:`q` . The value of :math:`q` is to be found such that :math:`\epsilon_i` is minimized. A system of equations may be set up with :math:`\epsilon_i` set to zero: .. math:: \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i) where the gradients are summed within a neighborhood ("search window") of :math:`q` . Calling the first gradient term :math:`G` and the second gradient term :math:`b` gives: .. math:: q = G^{-1} \cdot b The algorithm sets the center of the neighborhood window at this new center :math:`q` and then iterates until the center keeps within a set threshold. .. index:: goodFeaturesToTrack cv::goodFeaturesToTrack ----------------------- .. cfunction:: void goodFeaturesToTrack( const Mat\& image, vector\& corners, int maxCorners, double qualityLevel, double minDistance, const Mat\& mask=Mat(), int blockSize=3, bool useHarrisDetector=false, double k=0.04 ) Determines strong corners on an image. :param image: The input 8-bit or floating-point 32-bit, single-channel image :param corners: The output vector of detected corners :param maxCorners: The maximum number of corners to return. If there are more corners than that will be found, the strongest of them will be returned :param qualityLevel: Characterizes the minimal accepted quality of image corners; the value of the parameter is multiplied by the by the best corner quality measure (which is the min eigenvalue, see :func:`cornerMinEigenVal` , or the Harris function response, see :func:`cornerHarris` ). The corners, which quality measure is less than the product, will be rejected. For example, if the best corner has the quality measure = 1500, and the ``qualityLevel=0.01`` , then all the corners which quality measure is less than 15 will be rejected. :param minDistance: The minimum possible Euclidean distance between the returned corners :param mask: The optional region of interest. If the image is not empty (then it needs to have the type ``CV_8UC1`` and the same size as ``image`` ), it will specify the region in which the corners are detected :param blockSize: Size of the averaging block for computing derivative covariation matrix over each pixel neighborhood, see :func:`cornerEigenValsAndVecs` :param useHarrisDetector: Indicates, whether to use operator or :func:`cornerMinEigenVal` :param k: Free parameter of Harris detector The function finds the most prominent corners in the image or in the specified image region, as described in [Shi94]_ : #. the function first calculates the corner quality measure at every source image pixel using the :func:`cornerMinEigenVal` or :func:`cornerHarris` #. then it performs non-maxima suppression (the local maxima in :math:`3\times 3` neighborhood are retained). #. the next step rejects the corners with the minimal eigenvalue less than :math:`\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)` . #. the remaining corners are then sorted by the quality measure in the descending order. #. finally, the function throws away each corner :math:`pt_j` if there is a stronger corner :math:`pt_i` ( :math:`i < j` ) such that the distance between them is less than ``minDistance`` The function can be used to initialize a point-based tracker of an object. Note that the if the function is called with different values ``A`` and ``B`` of the parameter ``qualityLevel`` , and ``A`` > {B}, the vector of returned corners with ``qualityLevel=A`` will be the prefix of the output vector with ``qualityLevel=B`` . See also: :func:`cornerMinEigenVal` , :func:`cornerHarris` , :func:`calcOpticalFlowPyrLK` , :func:`estimateRigidMotion` , :func:`PlanarObjectDetector` , :func:`OneWayDescriptor` .. index:: HoughCircles cv::HoughCircles ---------------- .. cfunction:: void HoughCircles( Mat\& image, vector\& circles, int method, double dp, double minDist, double param1=100, double param2=100, int minRadius=0, int maxRadius=0 ) Finds circles in a grayscale image using a Hough transform. :param image: The 8-bit, single-channel, grayscale input image :param circles: The output vector of found circles. Each vector is encoded as 3-element floating-point vector :math:`(x, y, radius)` :param method: Currently, the only implemented method is ``CV_HOUGH_GRADIENT`` , which is basically *21HT* , described in [Yuen90]_ . :param dp: The inverse ratio of the accumulator resolution to the image resolution. For example, if ``dp=1`` , the accumulator will have the same resolution as the input image, if ``dp=2`` - accumulator will have half as big width and height, etc :param minDist: Minimum distance between the centers of the detected circles. If the parameter is too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is too large, some circles may be missed :param param1: The first method-specific parameter. in the case of ``CV_HOUGH_GRADIENT`` it is the higher threshold of the two passed to :func:`Canny` edge detector (the lower one will be twice smaller) :param param2: The second method-specific parameter. in the case of ``CV_HOUGH_GRADIENT`` it is the accumulator threshold at the center detection stage. The smaller it is, the more false circles may be detected. Circles, corresponding to the larger accumulator values, will be returned first :param minRadius: Minimum circle radius :param maxRadius: Maximum circle radius The function finds circles in a grayscale image using some modification of Hough transform. Here is a short usage example: :: #include #include #include using namespace cv; int main(int argc, char** argv) { Mat img, gray; if( argc != 2 && !(img=imread(argv[1], 1)).data) return -1; cvtColor(img, gray, CV_BGR2GRAY); // smooth it, otherwise a lot of false circles may be detected GaussianBlur( gray, gray, Size(9, 9), 2, 2 ); vector circles; HoughCircles(gray, circles, CV_HOUGH_GRADIENT, 2, gray->rows/4, 200, 100 ); for( size_t i = 0; i < circles.size(); i++ ) { Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); int radius = cvRound(circles[i][2]); // draw the circle center circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 ); // draw the circle outline circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 ); } namedWindow( "circles", 1 ); imshow( "circles", img ); return 0; } .. Note that usually the function detects the circles' centers well, however it may fail to find the correct radii. You can assist the function by specifying the radius range ( ``minRadius`` and ``maxRadius`` ) if you know it, or you may ignore the returned radius, use only the center and find the correct radius using some additional procedure. See also: :func:`fitEllipse` , :func:`minEnclosingCircle` .. index:: HoughLines cv::HoughLines -------------- .. cfunction:: void HoughLines( Mat\& image, vector\& lines, double rho, double theta, int threshold, double srn=0, double stn=0 ) Finds lines in a binary image using standard Hough transform. :param image: The 8-bit, single-channel, binary source image. The image may be modified by the function :param lines: The output vector of lines. Each line is represented by a two-element vector :math:`(\rho, \theta)` . :math:`\rho` is the distance from the coordinate origin :math:`(0,0)` (top-left corner of the image) and :math:`\theta` is the line rotation angle in radians ( :math:`0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}` ) :param rho: Distance resolution of the accumulator in pixels :param theta: Angle resolution of the accumulator in radians :param threshold: The accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ) :param srn: For the multi-scale Hough transform it is the divisor for the distance resolution ``rho`` . The coarse accumulator distance resolution will be ``rho`` and the accurate accumulator resolution will be ``rho/srn`` . If both ``srn=0`` and ``stn=0`` then the classical Hough transform is used, otherwise both these parameters should be positive. :param stn: For the multi-scale Hough transform it is the divisor for the distance resolution ``theta`` The function implements standard or standard multi-scale Hough transform algorithm for line detection. See :func:`HoughLinesP` for the code example. .. index:: HoughLinesP cv::HoughLinesP --------------- .. cfunction:: void HoughLinesP( Mat\& image, vector\& lines, double rho, double theta, int threshold, double minLineLength=0, double maxLineGap=0 ) Finds lines segments in a binary image using probabilistic Hough transform. :param image: The 8-bit, single-channel, binary source image. The image may be modified by the function :param lines: The output vector of lines. Each line is represented by a 4-element vector :math:`(x_1, y_1, x_2, y_2)` , where :math:`(x_1,y_1)` and :math:`(x_2, y_2)` are the ending points of each line segment detected. :param rho: Distance resolution of the accumulator in pixels :param theta: Angle resolution of the accumulator in radians :param threshold: The accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ) :param minLineLength: The minimum line length. Line segments shorter than that will be rejected :param maxLineGap: The maximum allowed gap between points on the same line to link them. The function implements probabilistic Hough transform algorithm for line detection, described in [Matas00]_ . Below is line detection example: :: /* This is a standalone program. Pass an image name as a first parameter of the program. Switch between standard and probabilistic Hough transform by changing "#if 1" to "#if 0" and back */ #include #include #include using namespace cv; int main(int argc, char** argv) { Mat src, dst, color_dst; if( argc != 2 || !(src=imread(argv[1], 0)).data) return -1; Canny( src, dst, 50, 200, 3 ); cvtColor( dst, color_dst, CV_GRAY2BGR ); #if 0 vector lines; HoughLines( dst, lines, 1, CV_PI/180, 100 ); for( size_t i = 0; i < lines.size(); i++ ) { float rho = lines[i][0]; float theta = lines[i][1]; double a = cos(theta), b = sin(theta); double x0 = a*rho, y0 = b*rho; Point pt1(cvRound(x0 + 1000*(-b)), cvRound(y0 + 1000*(a))); Point pt2(cvRound(x0 - 1000*(-b)), cvRound(y0 - 1000*(a))); line( color_dst, pt1, pt2, Scalar(0,0,255), 3, 8 ); } #else vector lines; HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 ); for( size_t i = 0; i < lines.size(); i++ ) { line( color_dst, Point(lines[i][0], lines[i][1]), Point(lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 ); } #endif namedWindow( "Source", 1 ); imshow( "Source", src ); namedWindow( "Detected Lines", 1 ); imshow( "Detected Lines", color_dst ); waitKey(0); return 0; } .. This is the sample picture the function parameters have been tuned for: .. image:: ../../pics/building.jpg And this is the output of the above program in the case of probabilistic Hough transform .. image:: ../../pics/houghp.png .. index:: perCornerDetect cv::perCornerDetect ------------------- .. cfunction:: void preCornerDetect( const Mat\& src, Mat\& dst, int apertureSize, int borderType=BORDER_DEFAULT ) Calculates the feature map for corner detection :param src: The source single-channel 8-bit of floating-point image :param dst: The output image; will have type ``CV_32F`` and the same size as ``src`` :param apertureSize: Aperture size of :func:`Sobel` :param borderType: The pixel extrapolation method; see :func:`borderInterpolate` The function calculates the complex spatial derivative-based function of the source image .. math:: \texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src} where :math:`D_x` , :math:`D_y` are the first image derivatives, :math:`D_{xx}` , :math:`D_{yy}` are the second image derivatives and :math:`D_{xy}` is the mixed derivative. The corners can be found as local maximums of the functions, as shown below: :: Mat corners, dilated_corners; preCornerDetect(image, corners, 3); // dilation with 3x3 rectangular structuring element dilate(corners, dilated_corners, Mat(), 1); Mat corner_mask = corners == dilated_corners; .. .. index:: KeyPoint .. _KeyPoint: KeyPoint -------- .. ctype:: KeyPoint Data structure for salient point detectors :: KeyPoint { public: // default constructor KeyPoint(); // two complete constructors KeyPoint(Point2f _pt, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1); KeyPoint(float x, float y, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1); // coordinate of the point Point2f pt; // feature size float size; // feature orintation in degrees // (has negative value if the orientation // is not defined/not computed) float angle; // feature strength // (can be used to select only // the most prominent key points) float response; // scale-space octave in which the feature has been found; // may correlate with the size int octave; // point (can be used by feature // classifiers or object detectors) int class_id; }; // reading/writing a vector of keypoints to a file storage void write(FileStorage& fs, const string& name, const vector& keypoints); void read(const FileNode& node, vector& keypoints); .. .. index:: MSER .. _MSER: MSER ---- .. ctype:: MSER Maximally-Stable Extremal Region Extractor :: class MSER : public CvMSERParams { public: // default constructor MSER(); // constructor that initializes all the algorithm parameters MSER( int _delta, int _min_area, int _max_area, float _max_variation, float _min_diversity, int _max_evolution, double _area_threshold, double _min_margin, int _edge_blur_size ); // runs the extractor on the specified image; returns the MSERs, // each encoded as a contour (vector, see findContours) // the optional mask marks the area where MSERs are searched for void operator()( const Mat& image, vector >& msers, const Mat& mask ) const; }; .. The class encapsulates all the parameters of MSER (see http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions ) extraction algorithm. .. index:: SURF .. _SURF: SURF ---- .. ctype:: SURF Class for extracting Speeded Up Robust Features from an image. :: class SURF : public CvSURFParams { public: // default constructor SURF(); // constructor that initializes all the algorithm parameters SURF(double _hessianThreshold, int _nOctaves=4, int _nOctaveLayers=2, bool _extended=false); // returns the number of elements in each descriptor (64 or 128) int descriptorSize() const; // detects keypoints using fast multi-scale Hessian detector void operator()(const Mat& img, const Mat& mask, vector& keypoints) const; // detects keypoints and computes the SURF descriptors for them void operator()(const Mat& img, const Mat& mask, vector& keypoints, vector& descriptors, bool useProvidedKeypoints=false) const; }; .. The class ``SURF`` implements Speeded Up Robust Features descriptor [Bay06]_ . There is fast multi-scale Hessian keypoint detector that can be used to find the keypoints (which is the default option), but the descriptors can be also computed for the user-specified keypoints. The function can be used for object tracking and localization, image stitching etc. See the ``find_obj.cpp`` demo in OpenCV samples directory. .. index:: StarDetector .. _StarDetector: StarDetector ------------ .. ctype:: StarDetector Implements Star keypoint detector :: class StarDetector : CvStarDetectorParams { public: // default constructor StarDetector(); // the full constructor initialized all the algorithm parameters: // maxSize - maximum size of the features. The following // values of the parameter are supported: // 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128 // responseThreshold - threshold for the approximated laplacian, // used to eliminate weak features. The larger it is, // the less features will be retrieved // lineThresholdProjected - another threshold for the laplacian to // eliminate edges // lineThresholdBinarized - another threshold for the feature // size to eliminate edges. // The larger the 2 threshold, the more points you get. StarDetector(int maxSize, int responseThreshold, int lineThresholdProjected, int lineThresholdBinarized, int suppressNonmaxSize); // finds keypoints in an image void operator()(const Mat& image, vector& keypoints) const; }; .. The class implements a modified version of CenSurE keypoint detector described in [Agrawal08]_