IntroductionΒΆ

Starting from OpenCV 2.0 the new modern C++ interface has been introduced. It is crisp (less typing is needed to code the same thing), type-safe (no more CvArr* a.k.a. void* ) and, in general, more convenient to use. Here is a short example of what it looks like:

//
// Simple retro-style photo effect done by adding noise to
// the luminance channel and reducing intensity of the chroma channels
//

// include standard OpenCV headers, same as before
#include "cv.h"
#include "highgui.h"

// all the new API is put into "cv" namespace. Export its content
using namespace cv;

// enable/disable use of mixed API in the code below.
#define DEMO_MIXED_API_USE 1

int main( int argc, char** argv )
{
    const char* imagename = argc > 1 ? argv[1] : "lena.jpg";
#if DEMO_MIXED_API_USE
    // Ptr<T> is safe ref-conting pointer class
    Ptr<IplImage> iplimg = cvLoadImage(imagename);

    // cv::Mat replaces the CvMat and IplImage, but it's easy to convert
    // between the old and the new data structures
    // (by default, only the header is converted and the data is shared)
    Mat img(iplimg);
#else
    // the newer cvLoadImage alternative with MATLAB-style name
    Mat img = imread(imagename);
#endif

    if( !img.data ) // check if the image has been loaded properly
        return -1;

    Mat img_yuv;
    // convert image to YUV color space.
    // The output image will be allocated automatically
    cvtColor(img, img_yuv, CV_BGR2YCrCb);

    // split the image into separate color planes
    vector<Mat> planes;
    split(img_yuv, planes);

    // another Mat constructor; allocates a matrix of the specified
        // size and type
    Mat noise(img.size(), CV_8U);

    // fills the matrix with normally distributed random values;
    // there is also randu() for uniformly distributed random numbers.
    // Scalar replaces CvScalar, Scalar::all() replaces cvScalarAll().
    randn(noise, Scalar::all(128), Scalar::all(20));

    // blur the noise a bit, kernel size is 3x3 and both sigma's
        // are set to 0.5
    GaussianBlur(noise, noise, Size(3, 3), 0.5, 0.5);

    const double brightness_gain = 0;
    const double contrast_gain = 1.7;
#if DEMO_MIXED_API_USE
    // it's easy to pass the new matrices to the functions that
    // only work with IplImage or CvMat:
    // step 1) - convert the headers, data will not be copied
    IplImage cv_planes_0 = planes[0], cv_noise = noise;
    // step 2) call the function; do not forget unary "&" to form pointers
    cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1,
                 -128 + brightness_gain, &cv_planes_0);
#else
    addWeighted(planes[0], constrast_gain, noise, 1,
                -128 + brightness_gain, planes[0]);
#endif
    const double color_scale = 0.5;
    // Mat::convertTo() replaces cvConvertScale.
    // One must explicitly specify the output matrix type
    // (we keep it intact, i.e. pass planes[1].type())
    planes[1].convertTo(planes[1], planes[1].type(),
                        color_scale, 128*(1-color_scale));

    // alternative form of convertTo if we know the datatype
    // at compile time ("uchar" here).
    // This expression will not create any temporary arrays
    // and should be almost as fast as the above variant
    planes[2] = Mat_<uchar>(planes[2]*color_scale + 128*(1-color_scale));

    // Mat::mul replaces cvMul(). Again, no temporary arrays are
    // created in the case of simple expressions.
    planes[0] = planes[0].mul(planes[0], 1./255);

    // now merge the results back
    merge(planes, img_yuv);
    // and produce the output RGB image
    cvtColor(img_yuv, img, CV_YCrCb2BGR);

    // this is counterpart for cvNamedWindow
    namedWindow("image with grain", CV_WINDOW_AUTOSIZE);
#if DEMO_MIXED_API_USE
    // this is to demonstrate that img and iplimg really share the data -
    // the result of the above processing is stored to img and thus
        // in iplimg too.
    cvShowImage("image with grain", iplimg);
#else
    imshow("image with grain", img);
#endif
    waitKey();

    return 0;
    // all the memory will automatically be released
    // by vector<>, Mat and Ptr<> destructors.
}

Following a summary “cheatsheet” below, the rest of the introduction will discuss the key features of the new interface in more detail.

Previous topic

OpenCV 2.2 C++ Reference

Next topic

C++ Cheatsheet

This Page